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uch has been said of the affinity

between mathematics and chess:
two domains of human thought where
very limited sets of rules yield inex-
haustible depths, challenges, frustra-
tions and beauty. Both fields support a
venerable and burgeoning technical lit-
erature and attract much more than
their share of child prodigies. For all
that, the intersection of the two do-
mains is not large. While chess and
mathematics may favor similar mind-
sets, there are few places where a
chess player or analyst can benefit
from a specific mathematical idea,
such as the symmetry of the board and
of most pieces’ moves (see for instance
[24]) or the combinatorial game theory
of Berlekamp, Conway, and Guy (as in
[4]). Still, when mathematics does find
applications in chess, striking and in-
structive results often arise.

Introduction

This article shows several mathemati-
cal applications that feature the knight
and its characteristic (2,1) leap. It is
based on portions of a book tentatively
titled Chess and Mathematics, cur-
rently in preparation by the two au-
thors of this article, which will cover
all aspects of the interactions between
chess and mathematics. Mathemati-
cally, the choice of (2,1) and of the 8 X
8 board may seem to be a special case
of no particular interest, and indeed we
shall on occasion indicate variations
and generalizations involving other
leap parameters and board sizes. But
long experience points to the standard
knight’s move and chessboard size as
felicitous choices not only for the game
of chess but also for puzzles and prob-
lems involving the board and pieces, in-
cluding several of our examples.

We will begin by concentrating on
puzzies such as the knight's tour. Many
of these are clearly mathematical prob-
lems in a very thin disguise (for in-
stance, a closed knight's tour is a
Hamiltonian circuit on a certain graph
%), and can be solved or at least better
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understood using the terminology and
techniques of combinatorics. We also
relate a few of these ideas with practi-
cal endgame technique (see Diagrams
1ff.,) 10, 11).

The latter half of the article shows
some remarkable chess problems fea-
turing the knight or knights. Most
“practical” chess players have little pa-
tience for the art of chess problems,
which has evolved a long way from its
origins in instructive exercises. But the
same formal concerns that may deter
the over-the-board player give some
problems a particular appeal to math-
ematicians. For instance, we will
exhibit a position, constructed by
P. O’Shea and published in 1989, where
White, with only king and knight, has
just one way to force mate in 48 (the
current record). We also show the
longest known legal game of chess that
is determined completely by its last
move (discovered by Rosler in 1994)—
which happens to be checkmate by
promotion to a knight.

Algebraic notation

We assume that the reader is familiar
with the rules of chess, but we assume
very little knowledge of chess strategy.
(The reader who knows, or is willing
to accept as intuitively obvious, that
king and queen win against king, or
even against king and knight if there is
no immediate draw, will have no diffi-
culty following the analysis.) The
reader will, however, have to follow
the notation for chess moves, either by
visualizing the moves on the diagram
or by setting up the position on the
board. Several notation systems have
been used; the most common one
nowadays, and the one we use here, is
“algebraic notation,” so called because
of the coordinate system used to name
the squares of the board. In the re-
maining paragraphs of this introduc-
tory section we outline this notation
system. Readers already fluent in alge-
braic notation may safely skip to the
next section, A Chess Endgame.




Each square on the 8 X 8 board is
uniquely determined by its row and
column, called “rank” and “file” re-
spectively. The ranks are numbered
from 1 to 8, the files named by letters
a through h. In the initial array, ranks
1 and 2 are occupied by White’s pieces
and pawns, ranks 8 and 7 by Black’s;
both queens are on the d-file, and both
kings on the e-file. Thus, viewed from
White’s side of the board (as are all the
diagrams in this article), the ranks are
numbered from bottom to top, the files
from left to right. We name a square by
its column followed by the row; for in-
stance, the White king in Diagram 1 be-
low is at d2. Each of the six kinds of
chessmen is referred to by a single let-
ter, usually its initial: K, Q, R, B, P are
king, queen, rook, bishop, and pawn
(often lowercase p is seen for pawn).
We cannot use the initial letter for the
knight because K is already the king,
so we use its phonetic initial, N for
kNight. For instance, Diagram 1 can be
described as: White Kd2, Black Kal,
Nf2, Pa2, Pc2.

To notate a chess move we name the
piece and its destination square, inter-
polating “X” if the move is a capture.
For pawn moves the P is usually sup-
pressed; for pawn captures, it is re-
placed by the pawn’s file. Thus in Dia-
gram 11, Black’s pawn moves are
notated a2 and a X b2 rather than Pa2
and P X b2. We follow a move by “+”
if it gives check, and by “!” or “?” if we
regard it as particularly strong or weak.
In some cases “!” is used to indicate a
thematic move, i.e., a move that is es-
sential to the “theme” or main point of
the problem.

As an aid to following the analysis,
moves are numbered consecutively,
from the start of the game or from the
diagram. For instance, we shall begin
the discussion of Diagram 1 by con-
sidering the possibility 1.KXc2 Nd3!.
Here “1” indicates that these are
White’s and Black’s first moves from
the diagram; “KXc2” means that the
White king captures the unit on ¢2; and
“Nd3!” means that the Black knight
moves to the unoccupied square d3,
and that this is regarded as a strong
move (the point here being that Black
prevents 2.Kcl even at the cost of let-
ting White capture the knight). When

analysis begins with a Black move, we
use “ . 7 to represent the previous
White move; thus “1 . . . Nd3!” is the
same first Black move.

A few further refinements are
needed to subsume promotion and
castling, and to ensure that every move
is uniquely specified by its notation.
For instance, if Black were to move
first in Diagram 1 and promoted his c2-
pawn to a queen (giving check), we
would write thisas 1. .. cl1Q+, or more
likely 1 ... clQ+7?, because we shall
see that after 2.KXc1 White can draw.
Short and long castling are notated 0-0
and 0-0-0 respectively. If the piece and
destination square do not specify the
move uniquely, we also give the de-
parture square’s file, rank, or both. An
extreme example: Starting from Dia-
gram 9, “Nbl” uniquely specifies a
move of the ¢3 knight. But to move it
to d5 we would write “Ncd5” (because
other knights on the b- and f-files could
also reach db); to a4, “N3ad4” (not
“Ncad” because of the knight on cb);
and to e4, “Nc3ed” (why?).

A Chess Endgame

We begin by analyzing a relatively sim-
ple chess position (Diagram 1). This
may look like an endgame from actual
play, but is a composed position—an
“endgame study”—created (by NDE)
to bring the key point into sharper
focus.

Diagram 1

.

N\

\

White to move

White, reduced to bare king, can do
no better than draw, and even that with
difficulty: Black will surely win if either
pawn safely promotes to a queen. A

natural try is 1.KXc2, eliminating one
pawn and imprisoning two of Black’s
remaining three men in the corner. But
1. .. Nd3! breaks the blockade (Dia-
gram 2a). Black threatens nothing but
controls the key square cl. The rules
of chess do not allow White to pass the
move; unable to go to cl, the king must
move elsewhere and release Black’s
men. After 2.KXd3 (or any other move)
Kbl followed by 3. . . alQ, Black wins
easily.

Diagram 2a

,’(;//// //// Z /%/,/'
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Returning to Diagram 1, let us try in-
stead 1.Kc1! This still locks in the Black
Kal and Pa2, and prepares to capture
the Pc2 next move, for instance 1. ..
Nd3+ 2.KXc2, arriving at Diagram 2a
with Black to move. White has in effect
succeeded in passing the move to
Black by taking a detour from d2 to c2.
Now it is Black who cannot pass, and
any move restores the White king’s ac-
cess to cl. For instance, play may con-
tinue 2 . . . Nb4+ 3.Kcl, reaching Dia-
gram 2b. Black is still bottled up. If it
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were White to move in Diagram 2b,
White would have to release Black with
Kd1 or Kd2 and lose; but again Black
must move and allow White back to c2,
for instance 3 . . . Nd3+ 4.Kc2 and we
are back at Diagram 2a.

So White does draw—at least if
Black obligingly shuttles the knight be-
tween d3 and b4 to match the White
king’s oscillations between c1 and c2.
But what if Black tries to improve on
this? While the king is limited to those
two squares, the knight can roam over
almost the entire board. For instance,
from Diagram 2a Black might bring the
knight to the far corner in m moves,
reaching a position such as Diagram
3a, and then back to d3 in n moves. If
m + nis odd, then Black will win since
it will be White’s turn to move. Instead
of d3, Black can aim for b3 or e2, which
also control c1; but each of these is two
knight moves away from d3, so we get
an equivalent parity condition. Alter-
natively, Black might try to reach b4
from d3 in an even number of moves,

Diagram 3a

White to move
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to reach Diagram 2b with White to
move; and again Black could aim for
another square that controls c2. But
each of these squares is one or three
knight moves away from d3, so again
would yield a closed path of odd length
through d3.

Can Black thus pass the move back
to White? For that matter, what should
White do in Diagram 3b? Does either
Kel or KXe2 draw, or is White lost re-
gardless of this choice?

The outcome of Diagram 2a thus
hinges on the answer to the following
problem in graph theory:

Let G = %gg be the graph whose ver-
tices are the 64 squares of the 8 X 8
chessboard and whose edges are the
pairs of squares joined by a knight’s
move. Does 4§ have a cycle of odd
length through d3?

Likewise White’s initial move in Dia-
gram 3b and the outcome of this
endgame comes down to the related
question concerning the same graph %:

What are the possible parities of lengths
of paths on § from h8 to cl or c2?

The answers result from the following
basic properties of ‘4:

LEMMA. (i) The graph 9 is connected.
(i1) The graph is bipartite, the two
parts comprising the 32 light squares
and 32 dark squares of the chess-
board.

Proof: Part (i) is just the familiar fact
that a knight can get from any square
on the chessboard to any other square.
Part (ii) amounts to the observation
that every knight move connects a light
and a dark square.

COROLLARIES. (1) There are no knight
cycles of odd length on the chessboard.
(2) Two squares of the same color are
connected by knight-move paths of
even length but not of odd length; two
squares of opposite color are con-
nected by knight-move paths of odd
length but not by paths of even length.

We thus answer our chess ques-
tions: White draws both Diagram 1 and
Diagram 3b by starting with Kcl. More
generally, for any initial position of the
Black knight, White chooses between
cl and ¢2 by moving to the square of

the same color as the one occupied by
the knight.

REMARK. Our analysis would reach the
same conclusions if the Black pawn on
c2 were removed from Diagrams 1 and
3b; we included this superfluous pawn
only as bait to make the wrong choice
of ¢2 more tempting.

Puzzle 1. For which rectangular boards
(if any) does part (i) or (ii) of the
Lemma fail? That is, which %, ,, are not
connected, or not bipartite? (All puz-
zles and all diagrams not explicated in
the text have solutions at the end of
this article.)

Knight’s Tours and the
Thirty-Two Knights

The graph 9 arises often in problems
and puzzles involving knights. For in-
stance, the perennial knight’s tour puz-
zle asks in effect for a Hamiltonian
path on %; a “re-entrant” or “closed”
knight’s tour is just a Hamiltonian cir-
cuit. The existence of such tours is
classical—even Euler spent some time
constructing them, finding among oth-
ers the elegant centrally symmetric
tour illustrated in Diagram 4 (from [9,
p- 191]):

Diagram 4
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A closed knight’s tour constructed by Euler

The extensive literature on knight's
tours includes many examples, which,
when numbered along the path from 1
to 64, yield semi-magic squares (all row
and column sums equal 260), some-
times with further “magic” properties,
but it is not yet known whether a fully
magic knight’s tour (one with major di-
agonals as well as rows and columns



summing to 260), either open or closed,
can exist.

More generally, we may ask for
Hamiltonian circuits on %, , for other
m,n; that is, for closed knight's tours
on other rectangular chessboards. A
necessary condition is that 4,, , be a
connected graph with an even number
of vertices. Hence we must have 2jmn
and both m,n at least 3 (cf. Puzzle 1).
But not all %,,, satisfying this condi-
tion admit Hamiltonian circuits. For in-
stance, one easily checks that %s4 is
not Hamiltonian. Nor are %3¢ and §33,
but 63 1o has a Hamiltonian circuit, as
does G3, for each even n > 10. For in-
stance, Diagram 5 shows a closed
knight’s tour on the 3 X 10 board:

Diagram 5
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A closed knight’s tour on the 3 X 10 board

There are sixteen such tours (ignoring
the board symmetries). More gener-
ally, enumerating the closed knight’s
tours on a 3 X (8 + 2n) board yields a
sequence 16, 176, 1536, 15424, . . . sat-
isfying a constant linear recursion of
degree 21 that was obtained indepen-
dently by Donald Knuth and NDE in
April 1994. See [23, Sequence A070030].
In 1997, Brendan McKay first com-
puted that there are 13267364410532
(more than 1.3 X 10'3) closed knight’s
tours on the 8 X 8 board ([19]; see also
[23, Sequence A001230], [26]).

We return now from enumeration to
existence. After %3, the next case is
44 . This is trickier: the reader might
try to construct a closed knight’s tour
on a 4 X 11 board, or to prove that
none exists. We answer this question
later.

What of maximal cliques and co-
cliques on 4? A clique is just a collection
of pairwise defending (or attacking)
knights. Clearly there can be no more
than two knights, again because % is bi-
partite: two squares of the same color
cannot be a knight’s move apart, and any

set of more than at least three squares
must include two of the same color. Co-
cliques are more interesting: how many
pairwise nonattacking knights can the
chessboard accommodate?! We follow
Golomb ([21], via M. Gardner [9, p.
193]). Again the fact that % is bipartite
suggests the answer (Diagram 6):

Diagram 6
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A one-factor in §

It is not hard to see that we cannot do
better: the 64 squares may be parti-
tioned into 32 pairs, each related by a
knight move, and then at most one
square from each pair can be used (Di-
agram 7). This is Patenaude’s solution
in [21]. Such a pairing of % is called a
“one-factor” in graph theory. Similar
one-factors exist on all 9y, , when 2mn
and m,n both exceed 2; they can be
used to show that in general a knight
coclique on an m X n board has size at
most mn/2 for such m,n.

Puzzle 2. What happens if m,n are
both odd, orif m = 2 or n < 2?

Are Diagram 6 and its complement the
only maximal cocliques? Yes, but this
is harder to show. One elegant proof,
given by Greenberg in [21], invokes the
existence of a closed knight’s tour,
such as Euler’s Diagram 4. In general,
on a circuit of length 2M the only sets
of M pairwise nonadjacent vertices are
the set of even-numbered vertices and
the set of odd-numbered ones on the
circuit. Here M = 32, and the knight’s
tour in effect embeds that circuit into
%, so a fortiori there can be at most
two cocliques of size M on ‘6—and we
have already found them both!

Of course this proof applies equally
to any board with a closed knight’s tour:
on any such board the light- and dark-
squared subsets are the only maximal
cocliques. Conversely, a board for which
there are further maximal cocliques can-
not support a closed knight’s tour. For
example, any 4 X n board has a mixed-
color maximal coclique, as illustrated
for n = 11 in Diagram 8.

A third maximal knight coclique on the 4 X
11 board

This yields possibly the cleanest proof
that there is no closed knight’s tour on
a 4 X n board for any n. (According
to Jelliss [14]}, this fact was known to
Euler and first proved by C. Flye
Sainte-Marie in 1877; Jelliss attributes
the above clean proof to Louis Posa.)

WARNING: the existence of a closed
knight’s tour is a sufficient but not nec-
essary condition for the existence of
only two maximal knight cocliques. It
is known that an m X n board supports
a closed tour if and only if its area mn
is an even integer > 24 and neither m
nor nis 1, 2, or 4. In particular, as noted
above there are no closed knight's

'Burt Hochberg jokes (in {11, p. 5], concerning the analogous problem for queens) that the answer is 64, all White pieces or all Black: pieces of the same color can-
not attack each other! Of course this joke, and similar jokes such as crowding several pieces on a single square, are extraneous 1o our analysis.
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tours on the 3 X 6 and 3 X 8 boards,
though as it happens on each of these
boards the only maximal knight co-
cliques are the two obvious mono-
chromatic ones.

More about %: Domination
Number, Girth, and the

Knight Metric

Another classic puzzle asks: How many
knights does it take to either occupy or
defend every square on the board? In
graph theory parlance this asks for the
“domination number” of 4.2 For the
standard 8 X 8 board, the symmetrical
solution with 12 knights (Diagram 9)
has long been known:

Diagram 9

All unoccupied squares controlled

Puzzle 3. Prove that this solution is
unique up to reflection.

The knight domination number for
chessboards of arbitrary size is not
known, not even asymptotically. See
[9, Ch. 14] for results known at the time
for square boards of order up to 15,
most dating back to 1918 [1, Vol. 2, p.
359]. If we ask instead that every
square, occupied or not, be defended,
then the 8 X 8 chessboard requires 14
knights. On an m X n board, at least
mn/8 knights are needed, since a
knight defends at most 8 squares.

Puzzle 4. Prove that mn/8 + O(m +
n) knights suffice. HINT: Treat the light
and dark squares separately.

We already noted that %, being bi-
partite, has no cycles of odd length.
(We also encountered the nonexis-
tence of 3-cycles as “§ has no cliques
of size 3”.) Thus the girth (minimal cy-
cle length) of § is at least 4. In fact the
girth is exactly 4, as shown for instance
in Diagram 10.

Diagram 10

White to move draws

Diagram 10a

2 T
After 2 Nd3!

This square cycle is important to
endgame theory: a White knight trav-
eling on the cycle can prevent the pro-
motion of the Black pawn on a3 sup-
ported by its king. To draw this
position White must either block the
pawn or capture it, even at the cost of
the knight. The point is seen after
1.Nb4 Kb3 2.Nd3! (reaching Diagram
10a) a2 3.Ncl+! “forking” king and

pawn and giving White time for 4.Nx a2
and a draw. On other Black moves
from Diagram 10a White resumes con-
trol of a2 with 3.Ncl or 3.Nb4; for in-
stance 2 ... Kc2 3.Nbd+ or 2. .. Ke3
3.Ncl Kb2 (else Na2+) 4.Nd3+! etc.
Note that the White king was not
needed.

NOTE TO ADVANCED CHESS PLAYERS: it
might seem that the knight does need
a bit of help after 1.Nb4 Kb1!?, when
either 2.Na2? or 2.Nd3? loses (in the
latter case to 2 . .. a2), but Black has
no threat so White can simply make a
random (“waiting”) king move. But this
is not necessary, as White could also
draw by thinking (and playing) out of
the a2-b4-d3-cl-a2 box: 1.Nb4 Kbl
2.Nd5! If now 2 . . . a2 then 3.Ne3+ is
a new drawing fork, and otherwise
White plays 3.Nb4 and resumes the
square dance.

Puzzle 5. Construct a position where
this Ndb5 resource is White’s only way
to draw.

WARNING: This puzzle is hard and re-
quires considerably more chess back-
ground than anything else in this arti-
cle. The construction requires some
delicacy: it is not enough to simply
stalemate the White king, because then
White can play 2.Na2 with impunity; on
the other hand if the White king is put
in Zugzwang (so that it has some legal
moves, but all of them lose), then the
direct 1 ... a2 2.NXa2 KXa2 wins for
Black.

Even more important for the prac-
tical chess player is the distance func-
tion on %, which encodes the number
of moves a knight needs to get from
any square to any other. The diame-
ter (maximal distance) on % is 6,
which is attained only by diagonally
opposite corners. This is to be ex-
pected, but shorter distances bring
some surprises. The table accompa-
nying Diagram 11 shows the distance
from each vertex of 4 to a corner
square:

2This terminology is not entirely foreign to the chess literature: A piece is said to be “dominated” when it can move to many squares but will be lost on any of them.
(The meaning of “many” in this definition is not precise because domination is an artistic concept, not a mathematicai one.) The introduction of this term into the chess
lexicon is attributed to Henri Rinck ({12, p. 93], [16, p. 151]). The task of constructing economical domination positions, where a few chessmen cover many squares,
has a pronounced combinatorial flavor; the great composer of endgame studies G.M. Kasparyan devoted an entire book to the subject, Domination in 2545 Endgame

Studies, Progress Publishers, Moscow, 1980.
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5 4 5 4 5 4 5 6
4 3 4 3 4 5 4 5
3 4 3 4 3 4 5 4
2 3 2 3 4 3 4 5
3 2 3 2 3 4 3 4
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White loses

The starred entry is due to the board
edges: a knight can travel from any
square to any diagonally adjacent square
in two moves except when one of them
is a corner square. But the other irregu-
larities of the table at short distances do
not depend on edge effects. Anywhere
on the board, it takes the otherwise ag-
ile knight three moves to reach an or-
thogonally adjacent square, and four
moves to travel two squares diagonally.
This peculiarity must be absorbed by
any chess player who would learn to
play with or against knights. One con-
sequence, known to endgame theory, is
shown in Diagram 11, which exploits
both the generic irregularity and the spe-
cial corner case. Even with White to
move, this position is a win for Black,
who will play . .. a2 and ... alQ. One
might expect that the knight is close
enough to stop this, but in fact it would
take it three moves to reach a2 and four
to reach al, in each case one too many.
In fact this knight helps Black by block-
ing the White king’s approach to al!

Puzzle 6. Determine the knight dis-
tance from (0,0) to (m,n) on an infinite
board as a function of the integers m,n.

Further Puzzles

We continue with several more puzzles
that exploit or extend the above dis-
cussion.

Puzzle 7. How does White play in Di-
agram 12 to force checkmate as quickly
as possible against any Black defense?

Yes, it’s White who wins, despite hav-
ing only king and pawn against 15 Black
men. Black’s men are almost paralyzed,
with only the queen able to move in its
corner prison. White must keep it that
way: if he ever moves his king, Black
will sacrifice his e2-pawn by promoting
it, bring the Black army to life and soon
overwhelm White. So White must move
only the pawn, and the piece that it will
promote to. That’s good enough for a
draw, but how to actually win?

Puzzle 8. (See Diagram 13.) There are
exactly 24 = 4! paths that a knight on
d1 can take to reach d7 in four moves;
plotting these paths on the chessboard
yields a beautiful projection of (the 1-
skeleton of) the 4-dimensional hyper-
cube! Explain.

Puzzle 9. We saw that there is an es-
sentially unique maximal configuration
of 32 mutually non-defending knights
on the 8 X 8 board.

i. Suppose we allow each knight to be
defended at most once. How many
more knights can the board then ac-
commodate?

Diagram 12

White to play and mate as quickly as possible

Diagram 13

W .Y
%/?/ N ///4%

LS50
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B a2 B

The 4! shortest knight paths from d1 to d7

%

ii. Now suppose we require each
knight to be defended exacily once.
What is the largest number of
knights on the 8 X 8 board satisfy-
ing this constraint, and what are all
the maximal configurations?

Puzzle 10. A “camel” is a (3,1) leaper,
that is, an unorthodox chess piece that
moves from (x,y) to one of the squares
(xx3, yxl or (xx1, y£3) (A
knight is a (2,1) leaper.) Because there
are eight such squares, it takes at least
mn/8 camels to defend every square,
occupied or not, on an m X n board.
Are mn/8 + O(m + n) sufficient, as in
Puzzle 4?

Synthetic Games

The remainder of this article is devoted
to composed chess problems featuring
knights.

A synthetic game [13] is a chess
game composed (rather than played)
to achieve some objective, usually in a
minimal number of moves. Ideally the
solution should be unique, but this is
very rare. Failing this, we can hope for
an “almost unique” solution, e.g., one
where the final position is unique, but
not the move order. For instance, the
shortest game ending in checkmate by
a knight is 3.0 moves: 1.e3 Nc6 2.Ne2
Nd4 3.g3 Nf3 mate. White can vary the
order of his moves and can play e4
and/or g4 instead of e3 and g3. The
Black knight has two paths to £3. The
biggest flaw, however, is that White
could play c3/c4 instead of g3/g4, and
Black could mate at d3. At least all 72
solutions share the central feature that
White incarcerates his king at its home
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square. A better synthetic game in-
volving a knight is given in Puzzle 11.

Puzzle 11, Construct a game of chess
in which Black checkmates White on
Black’s fifth move by promoting a
pawn to a knight.

Proof Games

A very successful variation of syn-
thetic games that allows unique solu-
tions are proof games, for which the
length 7 of the game and the final po-
sition P are specified. For the condi-
tion (P,n) to be considered a sound
problem, there should be a wunique
game in n moves ending in P. (Some-
times there will be more than one so-
lution, but solutions should be related
in some thematic way. Here we will
only consider conditions (P,n) that
are uniquely realizable, with the ex-
ception of Diagram 17.)

The earliest proof games were com-
posed by the famous “Puzzle King” Sam
Loyd in the 1890s but did not have
unique solutions; the earliest proof
game meeting today’s standards seems
to have been composed by T. R. Daw-
son in 1913. Although some interesting
proof games were composed in subse-
quent years, the vast potential of the
subject was not suspected until the fan-
tastic pioneering efforts of Michel Cail-
laud in the early 1980s. A close to com-
plete collection of all proof games
published up to 1991 (around 160 prob-
lems) appears in [28].

Let us consider some proof games
related to knights. We mentioned ear-
lier that the shortest game ending in
mate by knight has length 3.0 moves.
None of the 72 solutions yield proof
games with unique solutions; i.e., every
terminal position has more than one
way of reaching it in 3.0 moves. It is
therefore natural to ask for the least
number n (either an integer or half-
integer) for which there exists a
uniquely realizable game of chess inn
moves ending with checkmate by
knight, ie., given the final position,
there is a unique game that reaches it
in 7 moves. Such a game was found in-
dependently by the two authors of this
article in 1996 for n = 4.0, which is
surely the minimum. The fina} position
is shown in Diagram 14.
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Diagram 14

Position after Black’s 4th move. How did the
game go?

Five other proof game problems in-
volving knights are presented in Puzzles
12 through 16. The minimum known
number of moves for achieving the game
is given in parentheses. (We repeat, the
game must be uniquely realizable from
the number of moves and final position.)

Puzzle 12. Construct a proof game
without any captures that ends with
mate by a knight (4.5).

Puzzle 13. Construct a proof game
ending with mate by a knight making a
capture (5.5).

Puzzle 14. Construct a proof game
ending with mate by a pawn promoting
to a knight (5.5).

There is a remarkable variant of Puz-
zle 14. Rather than having the game de-
termined by its final position and num-
ber of moves, it is instead completely
determined by its last move (including
the move number)! This is the longest
known game with this property.

Puzzle 14'. Construct a game of chess
with last move 6.gXf8N mate.

The above proof games focus on
achieving some objective in the mini-
mum number of moves. Many other
proof games in which knights play a
key role have been composed, of which
we give a sample of five problems. Di-
agrams 15, 16, and 17 feature “impos-
tors”—some piece(s) are not what they
seem. The first of these (Diagram 15)
is a classic problem that is one of the

earliest of all proof games, while Dia-
gram 16 is considerably more chal-
lenging. Diagram 17 features a differ-
ent kind of impostor. Note that it has
two solutions; it is remarkable how
each solution has a different impostor.
The complex and difficult Diagram 18
illustrates the Frolkin theme: the mul-
tiple capture of promoted pieces. Dia-
gram 19 shows, in the words of Wilts
and Frolkin [28, p. 53], that “the seem-
ingly indisputable fact that a knight
cannot lose a tempo is not quite un-
ambiguous.”

Puzzle 15. Construct a proof game
ending with mate by a pawn promoting
to a knight without a capture on the
mating move (6.0).

Puzzle 16. Construct a proof game
ending with mate by a pawn promoting
to a knight with no captures by the mat-
ing side throughout the game (7.0).

Diagram 15

After Black’s 4th. How did the game go?

Diagram 16

After Black’s 12th. How did the game go?



Diagram 17

After White’s 13th. How did the game go?
Two solutions!

7. 7

After Black’s 10th move. How did the game

Retrograde Analysis

In retrograde analysis problems (called
retro problems for short), it is neces-
sary to deduce information from the
current position concerning the prior

Diagram 20

Mate in one

history of the game. It is only assumed
that the prior play is legal; no assump-
tion is made that the play is “sensible.”
Proof games are a special class of retro
problems. We will give only one illus-
tration here of a retro problem that is
not a proof game. It is based on con-
siderations of parity, a common theme
whenever knights are involved. Dia-
gram 20 is a mate in one. A chess prob-
lem with this stipulation almost invari-
ably involves an element of retrograde
analysis, such as determining who has
the move. In a problem with the stipu-
lation “Mate in n,” it is assumed that
White moves first unless it can be
proved that Black has the move in or-
der for the position to be legal.

Length Records

In length records, one tries to con-
struct a position that maximizes the
number of moves that must elapse be-
fore a certain objective is satisfied. The
most obvious and most-studied objec-
tive is checkmate. In other words, how
large can n be in a problem with the
objective “mate in n” (i.e., White to play
and checkmate Black in n moves)?
Chess problem standards demand that
the solution should be unique if at all
possible. It is too much to expect, es-
pecially for long-range problems, that
White has a unique response to every
Black move for White to achieve his
objective. In other words, it is possible
for Black to defend poorly and allow
White to achieve his objective in more
than one way, or even to achieve it ear-
lier than specified. The correct unique-
ness condition is that the problem

should be dual-free, which means that
Black has at least one method of de-
fending which forces each White move
uniquely if White is to achieve his ob-
jective. The objective of checkmate
can be combined with other condi-
tions, such as White having only one
unit besides his king. The ingenious Di-
agram 21 shows the current record for
a “knight minimal,” i.e., White’s only
unit besides his king is a knight. For
other length records, as well as many
other tasks and records, see [20].

Diagram 21

Paradox

The term “paradox” has several mean-
ings in both mathematics and ordinary
discourse. We will regard a feature of
a chess problem (or chess game) as
paradoxical if it is seemingly opposed
to common sense. For instance, com-
mon sense tells us that a material ad-
vantage is beneficial in winning a chess
game or mating quickly. Thus sacrifice
in an orthodox chess problem (i.e., a
direct mate or study) is paradoxical. Of
course it is just this paradoxical ele-
ment that explains the appeal of a sac-
rifice. Another common paradoxical
theme is underpromotion. Why not
promote to the strongest possible
piece, namely, the queen? This theme
is related to that of sacrifice, because
in each case the player is forgoing ma-
terial. To be sure, underpromotion to
knight in order to win, draw, or check-
mate quickly is not so surprising (and
has even occurred a fair number of
times in games), since a knight can
make moves forbidden to a queen. Tim
Krabbé thus remarks in [15] that
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knighting hardly counts as a true “un-
derpromotion.” Nevertheless, knight
promotions can be used for surprising
purposes that heighten the paradoxical
effect.

Diagram 22 shows four knight sacri-
fices, all promoted pawns, with a total
of five promotions to knight. Diagram
23 shows a celebrated problem com-
posed by Sam Loyd where a pawn pro-
motes to a knight that threatens no
pieces or checks and is hopelessly out
of play. For some interesting com-
ments by Loyd on this problem, see [27,
p- 403].

Mate in 3

Note that the impostors of Diagrams
15-17 may also be regarded as para-
doxical, because we're trying to reach
the position as quickly as possible, and
it seems a waste of time to move
knights into the original square(s) of

other knights. Similarly the time-wast-
ing 5.h X g8N 6.Nh6 7.NX{7 of Diagram
19 seems paradoxical—why not save a
move by 5.hxXg8B and 6.bXf7+?

Helpmate

In a helpmate in n moves, Black moves
first and cooperates with White so that
White mates Black on White’'s nth
move. If the number of solutions of a
helpmate is not specified, then there
should be a unique solution. For a long
time it was thought impossible to con-
struct a sound helpmate with the theme
of Diagram 24, featuring knight promo-
tions. Note that the first obstacle to
overcome is the avoidance of check-
mating White or stalemating Black. The
composer of this brilliant problem, Ga-
bor Cseh, was tragically killed in an ac-
cident in 2001 at the age of 26.

Diagram 24

2

retierra

Helpmate in 10

Piece Shuffle

In piece shuffles or permutation tasks,
a rearrangement of pieces is to be
achieved in a minimum number of
moves, sometimes subject to special
conditions. They may be regarded as
special cases of “moving counter prob-
lems” such as given in [2, pp. 769-777]
or [3, pp. 58-68]. A classic example in-
volving knights, going back to Guarini
in 1512, is shown in Diagram 25. The
knights are to exchange places in the
minimum number of moves. (Each
White knight ends up where a Black
knight begins, and vice versa.) The sys-
tematic method for doing such prob-
lems, first enunciated by Dudeney [3,

solution to #341] and called the method
of “buttons and strings,” is to form a
graph whose vertices are the squares
of the board, with an edge between two
vertices if the problem piece (here a
knight) can move from one vertex to
the other. For Diagram 25, the graph is
just an eight-cycle (with an irrelevant
isolated vertex corresponding to the
center square of the board). Diagram
26 is a representation of the problem
that makes it quite easy to see that the
minimum number of moves is sixteen
(eight by each color), achieved for in-
stance by cyclically moving each
knight four steps clockwise around the
eight-cycle. If a White knight is added
at bl and a Black knight at b3, then
somewhat paradoxically the minimum
number of moves is reduced to eight!
A variation of the stipulation of Dia-
gram 25 is the problem presented as
Puzzle 17, whose solution is a bit tricky
and essentially unique.

Diagram 25

A A
A 2

Exchange the knights in a minimum number

of moves

Diagram 26

The graph corresponding to Diagram 25

Puzzle 17. In Diagram 25 exchange the
knights in a minimum number of move
sequences, where a “move sequence” is
an unlimited number of consecutive
moves by the same knight.

For some more sophisticated prob-
lems similar to Diagram 25, see [10, pp.
114-124]. The most interesting piece

3More paradoxical are underpromotions to rooks and bishops, but we will not be concerned with them here.
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shuffle problems connected with the
game of chess (though not focusing on
knights) are due to G. Foster [5, 6, 7,
8], created with the help of his com-
puter program WOMBAT (Work Out
Matrix By Algorithmic Techniques).

Puzzle Answers, Hints,
and Solutions

1. The graph %,,, is connected for
m =n =1 (only one vertex) and
not connected for m = n = 3 (the
central square is an isolated ver-
tex). With those two exceptions,
% is connected if and only if
m > 2 and n > 2. Every 4,, , is bi-
partite, except 9;; (empty parts
not allowed); each non-connected
graph %,,,, is bipartite in several
ways except for G, = 4, ;.

2. f m =1orn =1then%,, is dis-
connected, so the maximal co-
clique is the set of all mn vertices.
The graph %, (or %,2) decom-
poses into two paths of length
Ln/2) and two of length [n/2] It
thus has a one-factor if and only if
4n, and otherwise has cocliques of
size >n; the maximal coclique size
isn + Swheres € {0,1,2}andn =
+ d mod 4. If m and n are odd in-
tegers greater than 1 then the max-
imal coclique size of §,, ,, is (mn +
1)/2, attained by placing a knight
on each square of the same parity
as a corner square of an m X n
board. One can prove that this is
maximal by deleting one of these
squares and constructing a one-
factor on the remaining mn — 1
vertices of 4§, ,.

3. Each of the four 2 X 2 corner sub-
boards requires at least three
knights, and no single knight may
occupy or defend squares in two
different subboards. Hence at least
4 - 3 = 12 knights are needed. For
three knights to cover the {al, bl,
a2, b2} subboard, one of them must
be on c¢3; likewise 13, {6, ¢6 must
be occupied if 12 knights are to
suffice. It is now easy to verify that
Diagram 9 and its reflection are the
only ways to place the remaining 8
knights so as to cover the entire
chessboard.

4. ([3, #319, p. 127]) On an infinite
chessboard, each square of odd

parity is a knight-move away from
exactly one of the squares with co-
ordinates (2x,2y) with x = y mod
4. Intersecting this lattice with an
m X n chessboard yields mn/16 +
O(m + n) knights that cover all
odd squares at distance at least 3
from the nearest edge. Thus an ex-
tra O(m + n) knights defend all
the odd squares on the board. The
same construction for the even
squares yields a total of mn/8 +
O(m + n).

Diagram 27

iy

V7,

77
7

»

White to move draws

5. One such position is shown in Di-

agram 27. Once the a-pawn is gone,
the position is a theoretical draw
whether Black plays fxXg2+ (Black
can do no better than stalemate
against KXg2, Khl, Kg2 etc.) or f2
(ditto after Ke2, Kfl, etc.), or lets
White play gXf3 and Kg2 and then
jettison the f-pawn to reach the
same draw that follows fXg2+.
But as long as Black’s a-pawn is on
the board, White can move only
the knight since gXxf3 would liber-
ate Black’s bishop which could
then force White's knight away
(for instance 1.Nb4 Kbl 2.gXf3?
g2+! 3.KXg2 Bd6 4.Nd5 Kb2) and
safely promote the a-pawn. Black’s
pawn on f3 could also be on h3
with the same effect.

. The distance is an integer, congru-

ent to m + n mod 2, that equals or
exceeds each of lmy2, n/2, and
(im, + nj)/3. It is the smallest such
integer except in the cases already
noted of (myn) = (0,£1), (£1,0),
or (£2,%2), when the distance ex-

7.

9.

ceeds the above lower bound by 2.
(adapted from Gorgiev) To win,
White must promote the pawn to a
knight, capture the pawns on b5
and c4, and then mate with NXxXb3
when the Black queen is on al.
Thus NXb3 must be an odd-num-
bered move. Therefore 1.h4, 2.h5,
3.h6, 4.h7, 5.h8N does not work be-
cause all knight paths from h8 to
b3 have odd length. Since the
knight cannot “lose the move,” the
pawn must do so on its initial move:
1.h3!, followed by 6.h8N!, 7.Nf7,
8.Nd6, 9.NxXb4, 10.Nd6, 11.NXc4.
12.Nah. At this point the Black
queen is on a2, having made 11
moves from the initial position;
whence the conclusion: 12 . .. Qal
13.NXb3 mate. (We omitted from
Gorgiev’s original problem the
initial move 1.Kf2XNel Qa2-al,
which only served to give Black his
entire army in the initial position
and thus maximize the material
disparity; and we moved a Black
pawn from ¢b to b5 to make the so-
lution unique, at some cost in
strategic interest.)

. Recall that a knight’s move joins

squares differing by one of the
eight vectors (=1, *2) or (%2,
*1), and check that to get some
four of those to add to (0,6) we
must use the four vectors with a
positive ordinate in some order.
Thus, to reach d7 from dl (or,
more generally, to travel six
squares north with no obstruction
from the edges of the board) in
four moves, the knight must move
once in each of its four north-go-
ing directions. Therefore each path
corresponds to a permutation of
the four vectors (*1,2) and (£2,1).
The number of paths is thus 4! =
24, and drawing them all yields the
image of the 4-cube under a pro-
jection taking the unit vectors to
(x1,2) and (%2,1). Instead of dl
and d7 we could also draw the 24
paths from a4 to g4 in four moves
to get the same picture. Not b2 and
6, though: besides the 24 paths of
Diagram 13 there are other four-
move journeys, for instance b2-d3-
f4-h5-£6.

(i) The maximum is still 32 (though
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10.

there are many more configura-
tions that attain this maximum).
To show this, it is enough to prove
that at most 8 knights can fit on a
4 X 4 board if each is to be de-
fended at most once. This in turn
can be seen by decomposing 9,4
as a union of four 4-cycles (Dia-
gram 28), and noting that only two
knights can fit on each 4-cycle.
(ii) Once again, the maximum is
32, this time with a new configu-
ration (Diagram 29) unique up to
reflection! (But note that this con-
figuration has a cyclic group of 4
symmetries, unlike the elementary
abelian 2-group of symmetries of
the maximal coclique (Diagram
6).) That this is maximal follows
from the first part of this puzzle.
For uniqueness, our proof is too
long to reproduce here in full; it
proceeds as follows. In any 32-
knight configuration, each of the
four 4 X 4 corner subboards must
contain eight knights, two on each
of its four 4-cycles. We analyze
cases to show that it is impossible
for two knights in different sub-
boards to defend each other. We
then show that Diagram 29 and its
reflection are the only ways to fit
four eight-knight configurations
into an 8 X 8 board under this con-
straint.
Yes, mn/8 + O(m + n) camels suf-
fice. The camel always stays on
squares of the same color. The
squares of one color may be re-
garded on a chessboard in its own
right, tilted 45° and magnified by a
factor of V2—in other words,
multiplied by the complex number
1 + 2. On this board, the camel’s
move amounts to the ordinary
knight’s move since 3 + 7 = (2 —
1)(1 + 7). We can thus adapt our
solution to Puzzle 4. Explicitly, on
an infinite chessboard each square
with both coordinates odd is a
camel’s move away from exactly
one square of the form (4x,8y).
Thus camels at (4o + a, 8x + b)
(a,b € {0,1}) cover the entire board
without duplication, and the inter-
section of this configuration with
an m X n board covers all but
O(m + n) of its squares.
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Diagram 28

il
3

12.

13.

14.

14'.

15.

16.

17.

Solution of Puzzle 8(ii)

. 1.d3 e5 2.Kd2 e4 3.Ke3 eXd3 4.b3

dXe2 5.Kb2 exXdlN mate. White
can play d4 instead of d3 (so Black
plays e Xd4) and can vary his move
order, but the final position is be-
lieved to be unique. This game first
appeared in {17].

(G. Forslund, Retros Mailing List,
June 1996) l.e3 f6 2.Qf3 Kf7
3.Bcd+ Kf6 4.Qc6+ Keb 5.Nf3
mate.

(G. Wicklund, Retros Mailing List.
October 1996) 1.Nf3 e6 2.Neb Ne7
3.Nxd7 e5 4. NXf8 Bd7 5.Neb6 Rf8
6.NXg7 mate.

(P. Rossler, Problemkiste, August
1994 (version)) 1.h4 d5 2.h5 Nd7
3.h6 Ndf6 4.hxg7 Kd7 5.Rh6 Ne8
6.2 <X f8N mate.

See solution to Puzzle 14.

(G. Donati, Retros Mailing List,
June 1996) 1.h4 g6 2.Rh3 g5 3.Re3
gXhd 4.£3 h3 5.Kf2 h2 6.Qel h1N
mate.

(O. Heimo, Retros Mailing List,
June 1996) 1.d4 eb 2.dXeb db
3.Qd4 Be6 4.Qb6 d4 5.Kd2 d3 6.Kc3
d2 7.a3 dIN mate.

al-c2, cl-b3-al, c3-a2-c1-b3, a3-bl-
c3-a2-cl, c2-a3-bl-c3, al-c2-a3, b3-
cl. Seven move sequences.

Diagram Solutions

Diagram 14. (N. Elkies, R. Stanley,
1996) l.c4 Nab6 2.cb NXcb 3.e3 a6
4. Ne2 Nd3 mate.

Diagram 15. (G. Schweig, Tukon, 1938)
1.Nc3 d6 2.Nd5 Nd7 3.NXe7 Ndf6
4.NxXg8 NXg8. The impostor is the
knight at g8, which actually started
out at b8.

Diagram 16. (U. Heinonen, The Prob-
lemist 1991) l.c4 Nf6 2.Qad Ne4d
3.Qc6 NxXd2 4.e4 Nb3 5.Bh6 Na6!
6.Nd2 Nb4 7.Rc1 Nd5 8.Rc3 Nf6 9.Rf3
Ng8 10.Rf6 Ncb 11.f4 Nab6 12.Ngf3
Nb8. Here both Black knights are im-
postors, as they have exchanged
places! For a detailed analysis of this
problem, see [16, pp. 207-209].

Diagram 17. (D. Pronkin, Die Schwalbe,
1985, 1st prize) 1.b4 Nf6 2.Bb2 Ned
3.Bf6 e Xf6 4.b5 Qe7 5.b6 Qa3 6.bXa7
Bceb 7.aXb8B Ra6 8.Ba7 Rd6 9.Bb6
Kd8 10.Ba5 b6 11.Bc3 Bb7 12.Bb2
Kc8 13.Bcl.

1.Nc3 Nf6 2.Nd5 Ned 3.Nf6+ exf6
4.b4 Qe7 5.b5 Qa3 6.b6 Bchb 7.bXaT7
b6 8.axXb8N Bb7 9.Na6 0-0-0 10.Nb4
Rde8 11.Nd5 Re6 12.Nc3 Rd6 13.Nbl.
This problem illustrates the Phoenix
theme: a piece leaves its original
square to be sacrificed somewhere
else, then a pawn promotes to ex-
actly the same piece which returns
to the original square to replace the
sacrificed piece. In the first solution
the bishop at ¢l is phoenix, while in
the second it is the knight at bl! As
if this weren’t spectacular enough,
Black castles in the second solution
but not the first.

Diagram 18. (M. Caillaud, Thémes-64,
1982, 1st prize) 1.a4 cb 2.a5 c4 3.a6
c3 4.axXb7 abb.Ra4 Nab6 6.Rc4 a4 7.b4
a3 8.Bb2 a2 9.Na3 alN! 10.Nb5 Nb3
11.cXb3 c¢2 12.Beb cIN! 13.Bb8
Nd3+ 14.exd3 eb 15.Qg4 e4 16.Ke2
e3 17.Kf3 e2 18.Ked eXxfIN! 19.Nf3
Ng3+ 20.hXg3 h5 21.Rel h4 22.Re2
h3 23.Nel h2 24.Qh3 hIN! 25.g4
Ng3+ 26.Xg3 Ne7 27.Nd6 mate. An
amazing four promotions by Black to
knight, all captured!

Diagram 19. (A. Frolkin, Shortest Proof
Games, 1991) 1.g4 e5 2.g5 Be7 3.g6
Bgh 4.gXh7 Qf6 5.h X g8N! Rh4 6.Nh6



Red 7.NXf7 KXf7 8.Ne3 Kgb 9.Nad
Kh5 10.c3 g6. If 5.hXg8B? Rh4
6.BXf7+ KXf7 7.Nc3 Re4 8 Na4 Kg6
9.¢3 Khb, then White must disturb his
position before 10 . . . g6. A knight is
able to “lose a tempo” by taking two
moves to get from g8 to {7, while a
bishop must take one or at least
three moves.

Diagram 20. (V. A. Korolikov, Schach,
1957) White’s knights are on squares
of the same color and hence have
made an odd number of moves in all.
The White rooks and the White king
have made an even number of moves,
and White has made one pawn move.
No other White units (i.e., the queen
and bishops) have moved. Hence
White has made an even number of
moves in all. Similarly, Black has
made an odd number of moves. Since
White moved first, it is currently
Black’s move, so Black mates in one
with 1 ... NXc2 mate.

Diagram 21. (P. O’Shea, The Prob-
lemist, 1989, lst prize) 1.Neb bIN+
(the only defense to 2.Nf3 mate)
2.Ka2 Nd2 3.Kal Nb3+ 4.Kbl Nd2+
5.Ka2. If Black moves either knight
then checkmate is immediate, so
5. .. a3 is forced. Now White and
Black repeat the maneuver Kal,
Nb3+, Kbl, Nd2+, Ka2 (any pawn
moves by Black would just hasten
the end): 8.Ka2 a4 11.Ka2 a5 14.Ka2
a6. Then 15.Kal Nb3+ 16.Kbl a2+
17.KXa2 Nd2. This maneuver gets re-
peated until all of Black’s a-pawns
are captured: 44.KXa2 Nd2 45.Kal
Nb3+ 46.Kbl Nd2+ 47.Ka2. Finally
Black must allow 48 Nf3 mate or
48.Ng4 mate!

Diagram 22. (H. M. Lommer, Szachy,

1965) White cannot allow Black’s
rook at e8 to stay on the board, but
how does White prevent Black from
being stalemated without releasing
the sleeping units in the hl corner?
1.fXe8N d3 2.Nf6 (not 2.Nd6? e xXd6,
and stalemate cannot be prevented
without releasing the hl corner)
g X6 (capturing with the other pawn
merely hastens the end) 3.g5 f Xgh
4.g7 g4 5.g8N g3 6.Nf6 e X6 7.Kg6 5
8.e7 f4 9.e8N f3 10.Nd6 cXxd6 11.c7
d5 12.¢8N d4 13.Nb6 axb6 14.a7 bb

15.a8N and wins, as White can play
19 NXf3 mate just after 18 . . . blQ.
For the history of this problem, see
25, pp. xxi-xxii].

Diagram 23. (S. Loyd, Holyoke Tran-

script, 1876) 1.bXa8N! KXg2 2.Nb6,
followed by 3.a8Q (or B) mate. Note
that a knight is needed to prevent 2
. .. BXa7. A queen or bishop pro-
motion at move one would be stale-
mate, and a rook promotion leads
nowhere. Normally a key move of
capturing a piece is considered a se-
rious flaw because it reduces Black’s
strength. Here, however, the capture
seems to accomplish nothing so it is
acceptable. Loyd himself says “[i]f
the capture seems a hopeless move
. . . then it is obviously well con-

cealed, and the most difficult key-
move that could be selected” [18, p.
156]. For further problems by Loyd
featuring distant knight promotion,
see [27, pp. 402-403].

Diagram 24. (G. Cseh, StrateGems,

2000, 1st prize) 1.LhIN! Nd6 2.h2 Nf5
3.Ng3+ NXg3 4.hIN! Ne2 5.fXe2+
Kg2! (not 5. .. KXe2?, since Black’s
tenth move would then check White)
6.fIN! Rc7 7.Bg3 RXc3 8.BXeb RXc2
9.Bg7 RXxcl 10.bXcIN! BXg7 mate.
Four promotions to knight by Black.
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